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Abstract

A queueing system with a single server providing n phases of service
in succession is considered. Every customer receives service in all phases.
When a customer completes his service in the 1** phase he decides either
to proceed to the next phase of service or to join the Kj retrial box (i =
1,2,...,n — 1), from where he repeats the demand for the (i + 1)** phase
of service after a random amount of time and independently to the other
customers in the system. When there are no more customers waiting in
the ordinary queue (first stage), the server departs for a single vacation
of an arbitrarily distributed lenght. The arrival process is assumed to
be Poisson and all service times are arbitrarily distributed. For such a
system, the mean number of customers in the ordinary queue and in each
retrial box separately are obtained, and used to investigate numerically
system performance.

Keywords: Poisson arrivals, n-phase service, retrial queues, general
services, single vacation.

1 Introduction

Queueing systems in which the server provides to each customer a number
of phases of heterogeneous service in succession, can be proved very useful
to model computer networks, production lines and telecommunication systems
where messages are processed in n stages by a single server.

Such kind of systems, with only two phases of service, have firstly discussed
by Krishna and Lee [9] and Doshi [5], while more recently in a series of works
(Madan [13], Choi and Kim [2], Choudhury and Madan [4], Katayama and
Kobayashi [7], Ke [8]), the previous results, are extended to include systems
allowing server vacations, Bernoulli feedback, N-policy, exhaustive or gated bulk
service, startup times etc., but again for models with only two phases of service.
Moreover in all papers mentioned above one can find important applications



to computer communication, production and manufacturing systems, central
processor units and multimedia communications.

Kumar, Vijayakumar and Arivudainambi [11] and Choudhury [3] are the
first who imposed the concept of ”retrial customers ” in the two phase ser-
vice models. Retrial queueing systems are characterized by the fact that an
arriving customer who finds the server unavailable does not wait in a queue but
instead he leaves the system, joining the so called retrial box, from where he
repeats the demand for service later. Practical use of retrial queueing systems
arises in telephone-switching systems and in telecommunication and computer
networks. For complete surveys of past papers on such kind of models see Falin
and Templeton [6] , Kulkarni and Liang [10] and Artalejo [1]. Kumar et.al. [11]
considered a two phase service system where an arriving customer who finds the
server unavailable joins the retrial box from where only the first customer can
retry for service after an arbitrarily distributed time period while in the work
of Choudhury (3] the investigated two phase model includes Bernoulli server
vacations and linear retrial policy. We have to observe here that in both papers
the service procedure contains only two phases of service and also there is not
any ordinary queue and all "waiting ” customers are placed in the retrial box.

In the work here we consider, for first time in the literature, a model with
n phases of service and n — 1 retrial boxes, K1, K, ..., Kn—1 say. All arriving
customers are placed, upon arrival, in an ordinary queue (first stage) to receive
service. When a customer completes his first phase service then, with probability
1 — p1, he proceeds to the second phase while, with probability p;, he leaves
the system and joins the K retrial box. This procedure is repeated in each
stage and so, when a customer completes his i** phase service, then either, with
probability 1 — p;, he proceeds to the (i + 1)** phase, or with probability p; he
joins the K; retrial box. The customers in each retrial box retry, after a random
amount of time and independently to each other, to find the server available and
to proceed to the next phase of their service. Note here that every customer
can join more than one retrial boxes during his service procedure. Moreover,
when there are no more customers for service in the ordinary queue, the server
departs for a single vacation (update devices, maintenance, etc.) of arbitrarily
distributed length. We have to point out here that in our model, and at any
time, an ordinary and n — 1 retrial queues must be taken in to account and so
the way to handle the situation becomes much more complicated.

Our system can be used to model any situation with many stages of service,
where in each stage a control and a separation of the serviced units must be
taken place, and if a unit satisfies some quality standards then it proceeds
immediately to the next phase of service, while, if the quality of the unit is
poor, then it is removed from the system and repeats its attempt to continue
its service procedure later when the server is free from high quality units. As
one understand a such kind of situation arise often in packet transmissions, in
manufacturing systems, in central processors, in multimedia communications
ete..

The article is organized as follows. A full description of the model is given
in section 2. Some, very useful for the analysis results, on the customer total



service cycle and server busy and vacation periods, are given in section 3, while a
system states analysis is performed in section 4. In section 5 the mean number of
customers in the ordinary queue and in each retrial box separately are obtained,
and used to produce, in section 6, numerical results and to compare numerically
system performance under various changes of the parameters.

2 The model

Consider a queueing system consisting of n phases of service and a single server
who follows the customer in service when he passes from one phase to the next.
Customers arrive to the system according to a Poisson distribution parameter
A, and are placed in a single queue (first phase) waiting to be served. When a
customer finishes his service in the ** phase (i = 1,2, ..., n) then either he goes
to the (i+1)* phase with probability 1—p;, or he departs from the system with
probability p; and joins the th retrial box (2 = 1,2,...,n — 1) from where he
retries, independently to the other customers in the box, after an exponential
time parameter y;, to find the server idle and to proceed to the (i + 1)* phase
of service. In case the customer chooses to depart and to join the retrial box,
the server starts immediately to serve in the first phase the next customer in
queue (if any). Every time the server becomes idle (no customers waiting in the
ordinary queue) he departs for a single vacation Up which length is arbitrarily
distributed with distribution function (D.F.) Bq(z), probability density function
(p.d.f) bo(z) and finite mean value by and second moment about zero 1—782). If
the server, upon returning from a vacation, finds customers waiting for service
in the first stage (ordinary queue) he starts serving them immediately, while if
there are no customers waiting, he remains idle awaiting the first arrival, from
outside or from a retrial box, to start the service procedure again.

Let us call P; customers the ordinary customers who are queued up and
wait to be served and P; customers (i = 2,3,...,n) those who joined the K?*;
retrial box. Note here that any customer can join, during his service procedure,
a number of retrial boxes and so a P; customer is called P; customer as far as
he continues his service procedure passing from one phase of service to the next
without joining another retrial box, while if a P; customer joins in the sequel
the K;-’Ll retrial box (j > ) then he becomes a P; customer. The service time of
a P; customer in the jt* phase, B;; say, is assumed to be arbitrarily distributed

with D.F. B;;(z), p.d.f. b;j(z) and finite mean value b;; and second moment

about zero Eg) (Bij(z), bij(2), bij, Zg) do not exist of course for j < 7). Finally

all random variables defined above are assumed to be independent.

3 General Results

If a customer does not join any retrial box during his service procedure (with
n—1

probability Sy = [];-7 (1 — p;)) then his total service cycle will be Ry =



> 5=1 Bij with LST of its p.d.f.
FO(S) = H ,BL-(S),
Jj=1

with 87;(-) the LST of b;;(-). Let us suppose now that an arriving customer joins
r retrial boxes (r = 1,2,...,n — 1) during his service procedure, for example
he joins the retrial boxes K, Km,, .y Km,.. Then it is clear that m; =
1,2,..,n—7, myg =my+1,..,n—7+1, and so on, until m, = m,_;+1,...,n—1.
Moreover the probability of this event is

n—1
Pmima...m,. = PmyPmy+-Pm,. H (1 - pi)1
ity
while the duration of the customer’s total service cycle in this case is (with
mo = 0)

T mi n
Rm1m2---mr e z( z Bmi_1+1j +V) -+ Z Bm,.+1ja

=1 j=m;_1+1 j=ms+1
and the LST of its p.d.f.

r+1 m;

lemg...mr (5) = (-'5* (s)y H H '8;11'—14—1]'(5)’

i=1j=m;_1+1

with m,41 = n. Note here that V is the delay incurrent due to server absence (in
vacations) that precedes the service of every customer emerging from a retrial
box. This absence can be either of a single duration Up, if no customers arrive
from outside during the vacation Up, or of a multiple duration, if at least one
customer arrives during Up, in which case the server has to repeat the vacation
as soon as he finishes the busy period of P; customers and before he becomes
available to the customer emerging from the retrial box. Thus the p.d.f. T(t) of
V satisfies
T(t) = e Mby(t) + (1 — e~ )b (t) * T(2),
with LST
1+ Bo(A+s) — Bo(s)

Thus the LST of the p.d.f. of the customer’s total service cycle R is given
by

n—1 n—r n—r+l n—1

7_'(5) = Z-JU'FO(S) + Z Z Z Z ﬁmlmg...mrfmlmz...mr(s))

r=1mi=1mg=mi+1 Mp=mMpr—_1+1



and if we take derivatives above, at s = 0, we arrive after some algebra at

* d = D -
= —/\ET(S)|3=0 =AE(R) = Z(Pj + Poj)s (1)
Jj=1
where
Poj = ﬂ%;lzg\—)pj—l, .7 — 2, 37 veey Ty ( )
2
P = APi1lbig + Lpj bk [ (L = Pm)l,  5=1,2,.m.

with po = 1, pg; = 0. Thus p* must be considered as the mean number of new
customers arriving during B and so, for an ergodic system, we have to assume
pr<l.

Let now S; be the time interval from the epoch at which a P; customer
starts his service in the j** phase until the epoch he either completes his service
procedure and depart from the system or he joins another retrial box and releases
the server. Let also N;(S;) be the new P; customers during S;. Note here that
during S; we can have only new P;customers (external arrivals) and /or one and
only one new Pji; or Pjyg or ...or P, customer according to the retrial box
that this specific P; customer will join next. Define finally

aO(t, k1, iy, kn)dt = PIN3(S;) = ki i=1,j+1,..,n, t<S; <t+adi,
aj(zl,zj+1,~--,zn) =

1 1 Fy ks ;
koo Zk”l:O...an:O zllzj_’ﬁl...zﬁ" ./;:0 aW (t, k1, iy b )dt.

Then it is easy to understand that, for any j = 1,2, ..., n,

@5(21: 241, 2 2n) = Lo Prtmen [y (1= 2) Il B3 (A = A1), (3)

with p, = 1, 241 = 1. Moreover from relation (2)
d
a':'al(z11 ]-a 17 seely 1)':1=1 =P1:
21

In general and for any z; j = 1,2,..,n, let as denote, for simplicity, by =
the (1 x n — 1) vector = (z3,z3,...,2,) and by Z the (1 x n) vector Z =
(@1,22, ..., T,). To proceed further we need the following Lemma the proof of
which is a simple application of the well known theorem of Takacs [15].

Lemma 1 If (i) |z| < 1 for any specific k = 2, ...,n, and |2,,| < 1 for all other
2<m<nwithm#k,or () |zm| <1,for all2 <m < n andp; > 1, then the
relation

zl_a'l(zl;z2$"'1zn)) (4)

has one and only one zero, z = xz(2) say, inside the region |z1| < 1. Specifically
for z=1, z(1) is the smallest positive real Toot of (4) with z(1) <1 ifp; > 1
and z(1)=1 for p; < 1.



Let now T be the duration of a busy period of P; customers starting with
i P customers and N (T(‘)) be the number of new P; customers (joining the
K" | retrial box) during T*). Define

gQ(t)dt = PIN;(TD) =k; j=2,3,....,n, t<T® < t+di,
Gi(s,2) = Y, 2, 2* i e“Stg(Q(t)dt.
Now it is easy to see (Theorem 1 in Langaris and Katsaros [12]) that
G9(0,2) = (=),
where z(z) the only zero of 21 — a1 (21, 22, ..., 2,) in |21] < 1.

Let now V be the time interval from the epoch the server departs for a single
vacation until the epoch he becomes idle for the first time. Denote also N;(V)
the number of new P; customers during V. If we define

ve(t)dt = P[N;(V) = k; j=2,3,.m, t<V <t+df,
vi(s,2) = Yo 2F [0 e uk(t)dt,

then
’Uk(t)= E_Mbo(t)ts{k=0}
+ o L2y G e o(2) % 6Gh(2) * vi—m(2),
where
5 _ 1 if A holds
) = 0 otherwise,
and so

o Bo(Y)
VO0A) = T = Ao = (@) ®)

Let D® the time interval from the epoch a P; i = 2,3, ...,n retrial customer
finds a position for service until the epoch that the server departs for a vacation,
and denote by N;(D®) the number of the new P; customers during D). Define
finally

dQ(t)dt = PIN;(DD) =k; j=2,3,..,n, t<D® <t+di,
DO (s,2) = Yrey 2° ft:O e‘“d(z (t)dt,

then

QW)=Y o)+ Y xS0 g™ 0, ©

=1 m=1 r=i



where 1; = (0, ...,0,1,0, ...,0) with the 1 in the j** position and
sir(t) = (1= pi)bis(t) * oo % (1 — pr—1)bir—1(£) * prbin(t), 7 =14,i4+1,...,n,

is in fact the total time the P; retrial customer holds the server from the epoch
he finds a position for service until the epoch he joins the K** retrial box and
becomes a P..; customer or departs from the system (case r = n). By taking
LST in (6) above we arrive at

DO (s, 2) = a;(2(2), Zig1s or) 2n),
where the function a;(2(2), Zi+1, ..., #») has been defined in (3).

Define finally C) as the time interval from the epoch at which a P; customer
finds a position for service until the epoch the server becomes for the first time
idle and ready to accept the next customer from outside or from a retrial box.
If N;(C®) is the number of new P; customers during C®) and define

B (t)dt = PIN;(CD) = k; j=2,3,.,n, t<CD <t+di,
CO(s,2) = TuZp 2 [Z e R,
then it is easy to realize that
CD(0, 2) = a;(z(2), Zig1, -, 20)0*(0, 2). (7)

We have to state here the following theorem. The proof is similar to the
proof of Theorem 3.2 in Moutzoukis and Langaris [14] and it is omitted here.

Theorem 2 For any permutation (ig,is,...,in) of the set (2,3,...,n) and for
(a) |%,,] < 1 for any specific m = j+1,..,n, and |z | < 1, for all other
r=j+1,..,nwithr #m, or (b) |z, | <1, forallr =j+1,...,n, and pi;_, > 1,
or (¢) |z | <1, forallr =j +1,...,n, and Pi; > 12 pi,_,, the equation

Zi; — C(ij)(oa Wi;_y (Zi," Zijp1s ey z7-n)) =0, (8)

has, for j = 2,3,...,n, one and only one root, z;, = Ti; (%0000 %)y J F
n, Z, = T;, say, inside the region |z;;| < 1, where the vector wi, (2, ,,
is defined by

z,-j+2, ceny z,-n)

03, (s %ins e Zi,) = (22, 23, ey Zn)s
Wi, (ziaaziu ""zin) = Wy, (171:2 (zia) "'7zin)7zis’ '*-722'1.),

w;, (Z.;k+1,zik+2, ...,zin) = Wy, (.’L‘,;k (zi,c“, ...,zin), z,'k+1,.,., zin), k= 2, ey — 1,

while p; = p, and

_ 0 ;s

pij = Py C(%)(O’ w‘ij_l(z‘ij7zi_7‘+1)"'7z‘in))l"‘.—".

i

Moreover for real z;, =1, r = j+1,...,n, and B s 21 the root z;,(1,...,1)
is the smallest positive real root of (8) with z;;(1,..,1) < 1 4f p;, > 1 and

z,(1,...,1) =1 for Py, < 1.



One can show here that, for any permutatation (ig,i3,...,4,) of the set
(2,3,...,n), the last term p; (> p; _, > ... > B;,) is given by,

= Pin FP0in +8{in <n}Pin-1 Z::in+1(Pk+Puk)
pin = i ) (9)
1_P1—Z:=2 (Pr+pPok) =0 (in<n} (1=Pin—1) Ek.__in_,_l(Pk"l'Po;c)

and so it is clear comparing relations (1), (9) that, for p* <1, p; (and all other
ﬁ,-j) is always less than one.
4 Steady states analysis

Let us assume that a state of statistical equilibrium exists and let N;, i =
1,2, ...,n denote the number of P; customers in the system. Let also

0 if server on vacation,
=< (4,7) 1f server busy on j phase with P; customer,
id if server idle,

and
g(k) = P(¢ =id, Ny =0, Npp = kpp, m =2,3,...,n),
po(k,z)dz =P =0, Npy =k, m=1,2,..,n, =< Uo(t) < z + dzx),
pij(k,z)dz = P(¢ = (4,5), Nm=km, m=1,2,..,n, z < Uy(t) < z +dz),

where, as it is stated before, k = (kz, ..., kn), k = (k1, k2, ..., kn) = (k1, k), and
Ui;(t), Up(t) the elapsed service or vacation time respectively. If finally

Q(z) = Zkzo g(k)z* = ZngO Eknzo q(ke, ...,kn)z§2z§3...z,’§ﬂ,
Po(%,2) = Y gz po(k, 2)2F,
Pij(2,2) = Trsapis(R,2)2F,  i,5=1,2,

then we arrive easily, for z > 0, at

Py(2,z) = Po(Z,0)(1 — Bo(z)) exp[—(A — Az1)z],

Pij(%,2) = P;j(%,0)(1 — Bij(z)) exp[— (X — Az1)a], (10)
and N
Y b5 Q(2) +Q() = Fo((0,2), 0850, )
2 it



with Bg(.) the LST of by(.). For the boundary conditions (z = 0) we obtain in
a similar way

n—1 m
Po((o, Z), 0) = Z PmZm41 ZRm((Ov z)a O)ﬁ:m()‘)

m=1 =1
+ " Pin((0, 2),0)85,(N), (12)
=1
P;;((0,2),0) = p; 2-Q (2), =2 ..,n,
Pi;(%,0) = Pr1(Z,0) [P, (1 — pm) Bim(A = A1), §=2,..m,
— 5 —1 * 1= 2, S (]
Pij(z’ 0) = ,lL,‘-dd?tQ(Z) Hznzz(l - pm)ﬁzm()‘ - )‘31)’ .7 =i+ 1, ey Tl
(13)
while for the Py;(Z,0) we obtain using relations (12) and (13)
Pi(2,0) = {Pu1Q(2)+ Y a;i(21, 241, - 20) Ps5((0, 2),0) (14)

=2

=Po((0,2), 0)[1 + Bp(A) — Bo(A — A=1)]}/[21 — ax(2)]-

Replacing now in the numerator of (14) the zero z(2) of the denominator,
we arrive at

Az(2)Q(2)+ 7, aj(z(2),2541,0,22) Pj; ((0,2),0)
Fo((0,2),0) = TR )P0 ) €20 (15)

and substituting back from (12)-(15) in (10) and (11) and integrating with
respect to = we obtain for j =2,...,n

i-1
e1j(21) P13 (2) = en(z1)Pu(Z) [[ (1 - pm)Bim(d — A21), (16)
m=1
_ d
ejj(#1)Pj;(2) = Hi7—-Q(2), ‘ (17)
]
_ d = . i=2,..,1n
eij(21)Pi;(2) = #id—z,Q(z) H (1= Pm)Bim(A — Az), I (18)
60(21)P0(f) — Az(22,..,20)Q(2)+ E;:z eji(z1)aj(@(22,00120)1%54 1500020 ) Pj5 (Z)

e ROV e o) -
en(21)Puu(z) = {Mar —2(2)]Q(2) + Xi_ses5(21)laj(21, 2541, -+ 20)
—a;(2(2), Zj41, -, 2a)]Pj(Z) + eo(21)[B5(A — Az1)
=Bo(A — Az(2))|Po(2)}/[21 — aa(2)], o



}:%%5 Q(x) +2Q(2) = eol=1) Po(2)B5(), (21)

j=2
where in general P.(Z) = [ P.(Z,z)dz and
A— )\Zl 1
€i5(% €i4 ]. = =.
.7( 1) l_ﬂw()\ )\zl) J( ) sz

We will use in the sequel the expressions above to obtain all generating
functions at the point zZ = 1.

Theorem 3 For p* < 1 the generating functions P;;(.), Py(.), Q(.) at the point
Z =1 are given by

Py(I)=Xb11,  Pj;(1) = Apj—ibjj, =2,.4n

_ = . b= 1wy
Pyi(T) = Api1bi; [2(1 — pm), L o
j=i+1l,.,n (22)
Q(l) 1+)‘b0/Bo(A)’
Po(i) = ﬂ%‘b&“)[zj=2 pj—1+ Q(1)].
Proof: Let us define
N(E) =Q(2)+Py(2) + > > Py(2), (23)
i=1 j=i
then from relations (16), (17) and (18)
ezz(‘-l) i=1,2,...,n
IW)(PMEUM%OMLFHhm
ie.
ManINp>i“”” (24)
7 13 = m j=i+1,...,n

and substituting back in (23), using (19) and observing that /(1) = T we obtain
after manipulations

F=Pu(@)+ 1+ —*(315 Q1)

(1) (25)
+Z j=2 [bn + Zk_J+1 ik Hm——g(l Pm) + ,3*(;)]'—
Using now (19) in (20) and putting Z = I we arrive at
Pu@ _ A Abo \
I - oAl ER®
1
+ZM%ﬁZmHu%HQp@®
j=2 k=j+1 m=j

10



where p; has been defined in Lemma 1, and so from (24)-(26) above we conclude

i-1
Pu(l) =X, Py(Q)=2by; [[(1-pm), 7=23,.,n (27

m=1
Multiplying relation (17) by z;, adding for all j, subtracting from (21) and
using (19) we arrive at

Yi—a €ij(21)Pj;(Z)

SO b5 = AL, (29
with ﬁ*()\)
1@ = Ty = @) (20)
D ) = i G B oo o) (30)

Now it is clear from (5), (7) and (29), (30) that
D,;(Z) = C(l)(oa Z),

and so for p* < 1 Theorem 2 holds for D;(z).

By putting now z; = 1 and, for any permutation (g, %3, ..., i) of (2,3, ...,n),
replacing z;, by the corresponding zero z;, (2., , .., 2i, ) We succeed to eliminate
all except one terms in the left hand part of (28) and arrive at
by

Apj—lbjj (1 + IBS(A))Q(]_), J = 2, 3> veey T2y (31)

1-p*

Pii(I) =

and replacing in (25) we obtain after manipulations

1-p
QM) = —%5—, (32)
1+ 56

which is the third of (22).

From (32) and (31) we obtain the first of (22) and putting back P;;(1) in
(24) and (19) we arrive at the second and forth of (22) respectively and the
theorem has been proved. O

5 Mean number of ordinary and retrial customers

For pp =1 and j =1,...,n, let us define now

n k-1
mi= pia0P + Y B2 [[(1-pm)

k=j+1  m=j

(33)
n—1 r - noo_ k-1
+23 [T @ -pa)birlbsrra+ > b [ @ -pm)l},
r=j m=j k=r+2 m=r+1

then, for the mean length of the ordinary queue,

11



Theorem 4 The mean number of Py customers, in the ordinary queue is given
by,

R S Q@Y (84
5 . vl Ak Pr-1+Q(1)] + Tk

2(1 - pl) ﬂ;()\) k=2 k=1 ’

where Q(1) and 7y, are given by (82), (33) respectively.

E(N:) =

Proof: Differentiating relations (17), (18), (19), with respect to z;, and
setting z; =1, 1 =1,2,...,n, we arrive easily at,

3Py (2) |5—i — A2p;_ 52 ,
821 = =
0P (2) a2p;_y5( I=1 5 _ j-1 d=1_
92y |£=i = 2 H (1 _pm) +A pi—lbij H(l —pm) E,bims (35)
m=i =i ol

1=2,3,.,n, j=i+1,..,n
= 225
B 1= TD?—[Z;c;z Pr-1+ Q(1)].

In a similar way, from (20), (16),

e 35, (B 25(2)
8};,1( et = z{\T—b?ﬁ[ﬁo(,\) > reaPr-1+Q(1)] + ka e
. bl
a};lzl(z).|5=i = 2()‘1 £1) H (1- Pm)[ﬁ:(k) [Zk,__.zpk 1+Q(1) ]—I—Zﬂ'k
k=1
+X° H1(1 — pm)[b1; Elglm + -IQL], i=23,..,n
(36)
Observing now that
ON(Z LS T 8Py (Z
E(N,) = 6z(1 )|2=i = El b2 = G|z + ;( d)pet,
2=13= Z1 Z1

and replacing from (35) and (36) we obtain relation (34) and the theorem has
been proved. O

Before giving the mean queue lengths for the retrial customers we have to
state some preliminary results. Let, for k,j = 2,...,n, m = 1,2,

h(m) dfmgz!|z=1, ﬁf’_;n)= az(a:(:), Fky )|z==1;

“k

12



where z(z) is defined in Lemma 1 (note that ﬁg"}? # ,b}:;), k # 7). Then after
some algebra we obtain,

MY = =S 0 -pa),

BD = X L oA)? :,i:l i

PR = A (b5 + T Bir Ty (1= ) + s 3y [orn [Ty (1 = )],
bﬁ) = Ahsc)(bJJ"_Er_J+1 Bir [Ti (1 — Pm)) + ('\,:(1)1)2 75

+6{k>1}2)‘hk DPk— 1Hm_3(1 pm) E bJ.,-, k,j=2,..n.

r=j

with ] (L =pm)=1for j>i. Moreover define

m=j
— AQ(1L,...,1)hP Mp_y Po(L,...,1) 5 @ o p(N25@)
Y § G YR R e 2pk_1501’[f;=”1(1—pm)['\b°h" + (7))
" A Z p; )+ bo [(1 )h(l) 4 )\Pk—1]
pr—1 | Loy (1—Pm) S 0 1Pj (l—pl)ﬂo(,\) p =
A1) , 2B
+W E POJ(PJk) =+ ﬁ*()\)o) k= 2, ey T
and denote

2

0
Dy =
kl aZkaZ[
Note here that Dy; = Dy, V k,l. Then we state the following theorem.

Q(2)|2=1, kl1=23,..,n

Theorem 5 The quantities Dy, k, | = 2,...,n can be found as the solution of
the system of linear equations,

n—1
(i + ) D = Z 15 Diej (Pr—1 I—[J(l Pm))ds5y + E 25 D150 k> 5}
X (et T (1= pm)) + D1t H (1= pm)[ 3, FEERE5 i + ]
m=j 7=

+Pi-1 n (1- pmnz Lilertrod Dy + 51,
(37)

Proof: Replacing (19) to (20) we arrive at

- Az z €;3(21)a; (21,55 41500:%0) Pj; (Z2)+e11(z1) P11(2)(a1(B)—=
eo(zl)Po(Z) - 1Q(2)+ 7o, eji(%1) 51(4_150:&; ﬁo(,\) )\ﬁ(ﬂ)‘i- 11(21) P11 (2)(a1(2) 1),
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and replacing to (21) and setting 2; = 1 we obtain
E;‘L:Z HjZ5 %Q(Z) = En—-zl wa’j(l) Zj+1y - ,4n) + 2 (1 z) (al(l z) — 1)
.7.7

(38)
Now adding relation (17) for all j = 2,...,n, putting z; = 1 and subtracting
from (38) we arrive at our basic equation,

zyj 1)—@() Zw[aju,zjﬂ,...,zn)—l]- (39)

J=1 35
Taking ﬁnally derivatives above with respect to zp, z, and using the fact
that from (17) 2252 _; = ,uJD]kaJ, Vk j=23,..n, we arrive after
some algebra at relatlon 37). a
Now we are ready to give the mean number of customers in the retrial boxes.

Lemma 6 The mean number of Py, k = 2,3,...,n customers in K,tc’il retrial
boz is given by

L s )\h(l)b
BNy = 3 SalentoadD+ %2 4 5 oo (0) + o) (40)

+5 (/\)[(l—p )h(l) /\Pk 1]+ Apk 1

Proof: Differentiating (20), (16), with respect to zx, and setting 2z =
1, 1 =1,2,...,n, we obtain after manipulations,

n
7 +
Ton et = buld> bon (B bbon) 1oy, + 54,
I (41)
(2) by [P (1—pr) = .
—?—B?Z: lz=1 = IJHb‘l]l £ a?:( Az=t, §=2,.4n
In a similar way from (17), (18), (19),
T p:Dibii,
ey Wl e i=200m,
oz, 12=1 bi; dzy, I j=i+1,..,n,
8Py (®) | _ __ = EmPom I b 1 & h(l) /\Pk 1 (42)
S |2=1 - K ADme1 mk + 45/35('\ [( —pP ) k ]

+ E pOm(p(l) ﬂ*(,\) )
Observing now that, for any k = 2,3, ...,n,

N (2 2] = B
BNe) = B sy = &)+ 355 O g pome)

=1 j=1

and replacing from (41), (42) to (43) we arrive easily at (40) and the theorem
has been proved. O
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6 Numerical Results

In this section we consider a system of n = 4 phases of service and so three retrial
boxes and use the formulae derived previously to obtain numerical results and
to investigate the way the mean number of customers in the retrial boxes E(N;)
i = 2,3, 4 are affected when we vary the mean vacation time by, the mean service
time of the ordinary customers by7, and the mean retrial interval in the first box
E(retrial K1) = 1/p,, always for increasing values of the mean arrival rate .

To construct the tables we assume that the vacation time Uy and the service
times follow exponential distributions with p.d.f.’s respectively,

1 _aibse 1 _age =Tyl
bg(m) = ae (l/bo) ) b,'](ﬂ',‘) = ?e (1/biJ) ; J — 4
ij g eeey e

Moreover we assume that in all tables below bia = 0.2, big = byy = by
bszg = 033, biz = bag = bzg = by = 0.25,p1 = 0.7, pp = 0.5, p3 =
Finally py = 0.5, pg = 2.

Table 1 shows the way E(N;) ¢ = 2,3,4 changes when we vary the mean
vacation time, for increasing values of the mean arrival rate A. Here one can ob-
serve the crucial role that the vacation plays on the number of retrial customers.
Thus, even for a small value of A\, A = 0.15 for example, E(N>) increases from
0.1488 to 46.026 when we pass from a system without vacation period (by = 0)
to the system with by = 2.7, while the corresponding value for E (N3) increases
from 0.2029 to 64.83. When now the arrival rate A becomes A = 0.42 then even
a small change from by = 0 to by = 0.6 increases dramatically the mean number
of retrial customers to 267.02 in retrial box K7 and to 380.45 in retrial box Ko
respectively. Thus we must be very careful on the vacation period that we must
allow, to avoid overcrowded retrial boxes. The behavior of the third retrial box
K3 (F(Ny)) is smoother, and it shows us a way to reduce this dramatic effect
of the vacation period by allowing faster retrials (E(retrial K3) = 1/ps = 0.5

3 =
0.1.
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here) and /or less preference of the box (ps = 0.1).

A\bo | | o [ o2 | os | 13 | 27
015 E(N;) 0.1488 0.1926 0.3084 0.6816 46.026
E(Ns) 02029 0.2451 0.3602 0.7605  64.83
E(Ns) 0.0112 0.0161 _0.0282  0.0623 __ 3.316
0.27 0.3798  0.5273 1.1548  120.04
0.4958 0.6693 1.3906  170.57
0.0287  0.0435  0.0954  8.599
0.42 1.045 1.8373  267.02
1.3022  2.2013  380.45
0.0768  0.1395  19.077
0.59 41926 2214
5.2556  314.4
0.2956  15.814
0.71 126.8
179.3
9.0327

Table 1: Values of E(N;), i=2,3,4, for p; =1, by; =0.5.

Similar observations can be deduced from Table 2 that contains values of
E(N;) i = 2,3,4 when we vary the mean first stage service by;. One can ob-
serve again the way the mean number of retrial customers in each box increases
when b;; increases. An increase that depends on how fast or slow the mean
retrial E(retrial K;) is and/or on the preference that customers show to the
corresponding box p;.

Ny | | o2 [ o8 [ 13 | 21 | 28 | 55
0.15  E(N,) 0.711 0.2233 0.3014 0.5481 1.0297  18522.3
E(Ns) 0.2257 0271 0.3291 0.4882 0.7737 26410.6
E(Ns) 0.0145 0.0181  0.0226 _ 0.0346 _ 0.0595  1321.15
0.25 0.3646  0.6088 1.1043 4.3585  193.69
0.4783  0.7108 1.1131  3.97  263.19
0.0306  0.047  0.0755 _ 0.25 _ 13.378
0.3 0.5051 0.9877  2.267  64.9
0.662  1.1428  2.354  85.09
0.042  0.0742  0.1496  4.423
0.4 0.9447  3.03¢  112.03
1.2382  3.6085  156.15
0.0765  0.2161 _ 7.9094
0.5 1.8448  108.39
2.4349  152.81
0.1444  7.717
0.71 92.598
131.62
6.632
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Table 2 : Values of E(N;), i =2,3,4, for p; =1, by = 0.2.

Table 3 finally depicts the way the E(N;) ¢ = 2,3,4 are affected when we
vary the mean retrial rate in the first box E(retrial) = 1/u;. One can observe
here not only the increase of E(N3), but mainly the reduction of E(N3) and
E(N4) in the other two boxes when we increase 1/, a reduction which is more
apparent when ) increases.

A\ E(retrial K;) I l 0.02 I 0.2 | 1 | 2 | 10
0.15 E(N,) 0.0452 0.0727 0.1926 0.3397 1.4994
E(N3) 0.2539 0.2515 0.2454 0.2409 0.2329
E(Ng4) 0.0177 0.0171  0.0161  0.0157 0.0151
0.27 0.1423 0.2185 0.5373  0.9183 3.862
0.7229  0.7087 0.6693 0.6443 0.5987
0.0521  0.0488  0.0435 0.413 0.0382
0.42 0.4837  0.761 1.8373 3.045 11.953
2.7032 2.5895 2.2913 2.1153  1.8179
0.1904 0.1699  0.1395  0.1271  0.1093
0.59 8.33 60.25 221.4 371..7 1347.5
464.3 419.03 314.4 265.23 192.75
23.5 21.12 15.814 13.31 9.6763

Table 3 : Values of E(N;), i=2,3,4 for bp =0.2, by; = 0.5.
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